
Case Study: 
Zend Server on IBM i

Vermont Gas Systems
Work Order Management System



2

• Independent consultant 

� Specialty is helping iSeries shops develop web applications, and 
related skills

� Training, mentoring, consultation and coding

•25+ years iSeries/AS400 experience

•12+ years of web development experience

� Web scripting language of choice = PHP

•Frequent presenter on web development topics

•Trainer for Zend Technologies

� Teaches Intro to PHP for RPG programmers 

About John Valance



3

•Natural Gas Utility in north western Vermont

•Regulated Business

•Serves Burlington and surrounding areas

•About 40,000 customers (small utility)

•Expanding service territory

Vermont Gas Systems



4

� IBM's legacy midrange platform

� Precursors date back to 1970s -80s

� Unique design, legendary reliability and longevity

• High technology investment protection

� Proprietary, integrated, object-based operating system (i/OS)

• Many built-in business capabilities

– Database (DB2), Security, Communications, 

• Technology Independent Machine Interface 

– OS has survived many hardware technology changes

� Proprietary programming language = RPG

� Vast portfolio of 3rd party business applications, in all industries

• Typically character-based terminal applications (aka green-screen)

� Runs enterprise applications, backbone for many medium to large businesses

IBM i (aka: iSeries, System i, i5, AS/400)



5

Screen-shot: IBM i Sign On Display



6

� 2005: Zend/IBM partnership

• Zend/PHP = Strategic technology for IBM i

• IBM i = Strategic platform for Zend

� Simple Installation includes Zend Server CE, licenses for Zend Studio

� PHP has gained wide acceptance by IBM i community

� PHP is more accessible for RPG programmers than Java

• Demand for education is growing

� Typically used to access legacy DB2 tables

� Toolkit for IBM i 

• Access native IBM i system objects

• Call RPG programs

PHP on IBM i



7

� Project Scope: Rewrite VGS Work Order Mgmt System in PHP

• Need to replace 15 y/o legacy, green-screen application, with 
numerous enhancements

• Old system needed many enhancements, was difficult to maintain

• Lots of redundant code, hard-coded value lists

� Technical goals of new system:

• Modern, intuitive user interface

• Solid, modular code base

• Easily maintainable and extensible

Background – Reasons for a New System



8

•Search for new system included several vendor 
offerings

• One vendor offering was $1Million+  solution,  plus services

• Excellent solution, but…

• Would have completely disrupted existing business processes

•In the end, decision to use custom coded solution 

� Browser-based interface

� PHP / Zend Server running on IBM i

� Consultant (me) to lead project and write code

Why Custom PHP Solution?



9

•Get exactly what they needed

•Low risk

•Low cost

System functionality based on old system, with 
enhancements

•Meet pressing business requirements

•Greatly improved interface and code based

• Incremental improvements to business processes

•Allows for future enhancements

Benefits of Custom Approach



10

•Maintain Information on Work Orders

� Anything related to construction or maintenance of gas lines

• Gas Transmission lines (regional pipelines)

• Gas Mains (local pipelines)

• Gas Services (pipe to premises)

� Repair Leaks (on mains / services)

� Retire / Replace main or service

� Work Order Type = describes type of line and work to be 
performed

•Primary users are Engineering Department

� Accounting also researches W/O issues

Functional Features of the System



11

•Cleanup details

•Pipe Exposures

•Sewers on site

•DIMP Data Collection (Key project goal)

� Distribution Integrity Management Plan

Interfaces

•Marketing - Sales Applications (New Installs)

•Accounting Activity / Project Costs

� Time Sheets / Payroll

� Vendor Billing

Ancillary Information



12

•Create Work Order

•Print Work Orders

� Several different formats for each WO type

•Complete Work Orders

� Entry of data collected in field

•Close Work Orders

� Post details to accounting

Life Cycle of Work Orders 



13

• Hybrid Object Oriented / Procedural Design

• Model / View / Controller code organization

• Selective use of Zend Framework components

• Powerful custom helper classes 

� Form generation

� CRUD SQL generation

• Highly consistent, easily maintainable code base

� Table searching/filtering/download

� Single record CRUD screens

• User maintainable list management (Drop-downs)

• Security

� Authentication with IBM i UID/PSWD

� Robust access control at user or group level

• Use of JOD Reports to generate PDF reports and printed forms

Technical Features of the System



14

Demo of System



15

• Began with desire to implement Zend Framework based architecture

• Not full implementation of Framework

� R & D period factored into schedule

� After 2 months, could not get all features working

• Zend_DB_Table, Zend_DB_Select, Zend_Paginator

� Created home-grown versions of these components

• VGS_DB_Table, VGS_DB_Select, VGS_Paginator

• Used many of the concepts of Framework, but had to "roll our own" classes

� Very consistent design, using OO

• No front controller, but using a common layout.php on all pages

� Handles authentication, error checking, page layout for every screen.

• Extensions to Zend_Form

� VGS_Form extends Zend_Form

• VGS_Form_Helper

� Automatically sets many form attributes from DB2 metadata

Use of Zend Framework



16

• layout.php - Included in each view script

� Functions to show header and footer 

� Error handling: set_error_handler()

� Session management: session_start()

• Check isset($_SESSION[‘userId’])

• If not, redirect to loginCtrl.php

Two main types of applications:

• Search Screens

� Multi-record, filtered, paginated record lists

• Edit/Display Record screens

� Single-record screens, for CRUD operations

Cookie-cutter design for building list and record screens

General Application Screens Structure



17

•Nav Buttons bar

� Main menu (or close pop-up)

� Download (optional)

� Create record (optional)

� + Custom buttons (app specific)

• Filter bar

• Paginator bar

• Search Results (records matching search criteria)

•Download capability

� Uses filters entered for search 

Search Screens - components



18

•Nav Buttons bar

� Main menu (or close pop-up)

� Save (not in display mode)

� Cancel

� Return to Search List

� + Custom buttons (app specific)

•Form

� Field Groups (defined in Form class)

Edit/Display Record screens - components



19

• Modes: 

� Create, Read (display), Update (edit), Delete

• Create and Edit modes

� Same validations, by default

� If form data changed, warning on cancel or navigate away

• Display mode

� Same form layout as Create/Edit

� Set all inputs to readonly, class="disabled", tabindex="-1", and clearValidators()

• Delete mode

� Show record output only, format like display mode

� Replace "Save button" with red "Delete button“

� Confirm dialog before delete

Record detail screens - CRUD



20

Three primary objects are involved, related to table 
being maintained:

•Form object, extends Zend_Form, e.g.: 

� class Project_Form extends Zend_form { … }

•Form Helper object (custom code, very helpful)

� class VGS_FormHelper { … }

� Retrieves DB2 metadata for table fields on form

� Sets appropriate filters, validators, attributes based on metadata

•Table object, extends VGS_DB_Table, e.g.:

� class Project_Master extends VGS_DB_Table { … }

Building a Detail Screen



21

Example –Sewer Update Form



22

•HTML forms are unwieldy, and contain many co-dependent 
elements

� <form> tag

� <input> tags of various types

� Field labels

� CSS and other rendering attributes

� Error messages

� Data values

• Server side code must handle:

� Form loading (new record defaults/ existing record values)

� Validations based on data types, business rules

� Reloading form with values and messages, until valid input

Zend_Form – base ZF class



23

•Zend Framework provides classes to simplify/abstract form 
processing

� Handle all aspects of form definition and processing in PHP

� Use render() method to display the form. 

� Largely avoids HTML, controls everything via structured program 
code.

•Zend_Form ~= <form>

•Zend_Form_Element ~= <input> 

� Zend_Form object contains multiple Zend_Form_Element objects

OO to the Rescue! 
Zend_Form / Zend_Form_Element



24

$form = new Zend_Form;

$form->setAction('/resource/process')

->setMethod('post');

$username = new Zend_Form_Element_Text('username');

$username->addValidator('alnum')

->addValidator('regex', false, array('/^[a-z]/'))

->setRequired(true)

->addFilter('StringToLower');

$form->addElement($username);

Zend_Form example



25

• reset() - clear form or load defaults for new record in create mode

� can override in derived class, with application appropriate values

• populate($dataArray) - load existing record in edit/display/delete mode

� keys of $dataArray are names of form elements

� good idea to use DB field names

• validate() - perform custom validations on inputs

� will run all validators added

• you can create custom, reuseable validators

� can override in derived class with custom validations

• render() - generate HTML  <form> and <input> tags for all elements

� handles all attributes, including  value=“…”

� decorators handle positioning (HTML container tags)

Zend_Form methods



26

abstract class VGS_Form extends Zend_Form { ... }



27

• Extends Zend_Form (we get all that goodness!), plus…

• Basic data access methods (create, update, retrieve, delete)

• General DB2 data filtering (screen <-> database)

• Form rendering 

� Field groups, elements, buttons, messages, hidden fields, JavaScripts.

• Form processing

� Initialization, loading from database, validation, database update, redirecting after 
success

• Boolean mode methods 

� isInquiryMode(), isUpdateMode(), etc…

• Attaching input helpers / popups

� Lookups (foreign key table search popup)

� Date pickers

VGS_Form in a Nutshell



28

• Loads metadata from DB2 for one or more tables

• Builds form elements from the metadata for selected fields

•Adds appropriate data type validations, filters and attributes, and 
labels to form elements

� This saves a lot of tedious coding

•Allows definition of field groups (boxes of fields on screen)

• Fields can be added to form by passing comma-separated list of 
field names.

• Can define additional validations and attributes for lists of fields

� Required entry, output only, override input type, attribs

VGS_Form_Helper



29

class VGS_FormHelper



30

class VGS_FormHelper 

{

/** The $metaData array will be used to generate labels, 

* filters and validators for the form elements automatically.   

* @var array

*/

public $metaData = array();

/** Contains an array of Zend_Form_Element to include on the form 

* @var array

*/

private $elements = array();

/**

* Holds an array describing the field groupings for display

* @var array

*/

public $fieldGroups = array(); 

VGS_FormHelper – public attributes



31

class WO_SewerForm extends VGS_Form 

{

private $wswRec; // Record array for existing w/o sewer record

private $woRec; // Complete w/o record for the related w/o  

// Key fields for this sewer record 

private $woNum;

private $wswSeqNo;

public function __construct( $conn, $woNum ) {

parent::__construct ( $conn );

{constructor stuff}...

$this->fh->addMetaData($conn, "WO_SEWER");

$this->setDefaultElements( );

}

Concrete form: WO_Sewer_Form - constructor



32

public function addMetaData($conn, $table) {

$schema = self::getObjectLibrary($table, '*FILE');

$syscols = new VGS_DB_Table($conn);

$query = "select * from qsys2/syscolumns 

where table_schema = '$schema' 

and system_table_name = '$table' ";

$rs = $syscols->execListQuery($query);

while ($sysColumn = db2_fetch_assoc($syscols->stmt)) {

// Add each column's metadata to the master metadata array 

$colName = $sysColumn['COLUMN_NAME'];

$this->metaData[$colName] = $sysColumn;

} 

}

VGS_Form_Helper->addMetaData($conn, $table)

� Retrieve column attributes from DB2 (qsys2/syscolumns)
� Store in VGS_Form_Helper->metaData array



33

COLUMN_NAME = WSW_ADDRESS

TABLE_NAME = WO_SEWER

TABLE_OWNER = ORCOM

ORDINAL_POSITION = 3

DATA_TYPE = VARCHAR 

LENGTH = 100

NUMERIC_SCALE = 

IS_NULLABLE = N

IS_UPDATABLE = Y

LONG_COMMENT = 

HAS_DEFAULT = Y

COLUMN_HEADING = Address              

STORAGE = 102

NUMERIC_PRECISION = 

CCSID = 37

TABLE_SCHEMA = WORKORDT

COLUMN_DEFAULT = ''

CHARACTER_MAXIMUM_LENGTH = 100

CHARACTER_OCTET_LENGTH = 100

NUMERIC_PRECISION_RADIX = 

DATETIME_PRECISION = 

COLUMN_TEXT = Address

SYSTEM_COLUMN_NAME = WSWADDR   

SYSTEM_TABLE_NAME = WO_SEWER  

SYSTEM_TABLE_SCHEMA = WORKORDT  

USER_DEFINED_TYPE_SCHEMA = 

USER_DEFINED_TYPE_NAME = 

IS_IDENTITY = NO

IDENTITY_GENERATION = 

IDENTITY_START = 

IDENTITY_INCREMENT = 

IDENTITY_MINIMUM = 

IDENTITY_MAXIMUM = 

IDENTITY_CYCLE = 

IDENTITY_CACHE = 

IDENTITY_ORDER = 

group = sewer

include = 1

label-class =  required 

required = 1

WSW_ADDRESS - MetaData

• UPPER_CASE = fields from QSYS2/SYSCOLUMNS

• Green = attributes used to generate form elements
• Red = attributes added by custom code



34

public function setDefaultElements( ) {

$flWO = 'WSW_WO_NUM, WO_TYPE, WO_STATUS, WO_DATE_COMPLETED';

$this->fh->addFieldGroup( $flWO, 'wo', 'Work Order Details');

$this->fh->setElementsProperties( $flWO, 'output_only', true);

$flSewer = 

'WSW_SEQNO, WSW_ADDRESS, WSW_CITY, WSW_LOCATED_PRIOR, WSW_SEWER_SIZE,

WSW_SEWER_MATERIAL, WSW_SEWER_TYPE, WSW_SEPARATION_FROM_GAS, 

WSW_INSPECTION_NEEDED, WSW_INSPECT_REASON';

$this->fh->addFieldGroup( $flSewer, 'sewer', 'Sewer Information');

$this->fh->setElementsProperties(

'WSW_SEQNO',

'output_only',true); 

$this->fh->setElementsProperties(

'WSW_ADDRESS, WSW_CITY, WSW_SEWER_TYPE, WSW_SEPARATION_FROM_GAS'

'required', true);

WO_Sewer_Form->setDefaultElements( )



35

$this->fh->setElementsProperties(

'WSW_LOCATED_PRIOR, WSW_INSPECTION_NEEDED', 

'input_type', 'y/n');

$this->fh->setElementsProperties(

'WSW_CITY, WSW_SEWER_TYPE, WSW_SEPARATION_FROM_GAS', 

'input_type', 'select');

$this->fh->setElementsProperties(

'WSW_NOTES', 'input_type', 'textarea');

etc...

// This creates Zend_Form_Elements out of the meta data

$this->fh->addElementsFromMetaData();

$this->addElements ( $this->fh->getElements() );

// Add a drop-down (<select>) list for Town 

$dd = new Code_Values_Master($this->conn);

$ddList = $dd->getCodeValuesList('TOWN', ' ');

$this->fh->setMultiOptions('WSW_CITY', $ddList);

etc...

WO_Sewer_Form->setDefaultElements( ) – cont’d



36



37

User Maintainable Drop Down Lists (for <select>)



38

Defines all table specific data access methods

• Parent class (VGS_DB_Table) 

Encapsulates basic DB2 functionality:

• Public methods used with Search lists and VGS_Paginator:

� execListQuery($queryString, $bindParms = array()) 

� execScrollableListQuery(VGS_DB_Select $select) 

� getRowCount(VGS_DB_Select $select)

• Public methods used to retrieve and update single record (detail screens)

� execUpdate($queryString, $bindParms = array())

� fetchRow($queryString, $bindParms = array())

• Security:

� checkPermissionByCategory( $category, $mode )

� Ensure user has authority to table for given mode

Table Object (VGS_DB_Table)



39

autoCreateRecord(array $inputs)

autoUpdateRecord(array $inputs)

autoDeleteRecord(array $inputs)

•Automatically build SQL statements from form inputs

• If form fields change, never need to modify SQL statements

•Never have to align field names and values 

•Uses bound parameters – no need to align parameter 
markers (?s)

•Huge time saver; ensures accurate updates without coding

•Bound parameters prevents SQL injection attacks

VGS_DB_Table – SQL generator methods



40

Name of the database table, specified in UPPERCASE.

public $tableName;

Field names prefix for this table (eg: 'WO_');

Used to extract the update fields from form inputs.

public $tablePrefix;

Array of key field names for this table

public $keyFields;

Boolean = table includes audit fields (Default = true)

public $hasAuditFields;

Boolean = physical record delete is allowed. (Default = false)

public $isRecordDeletionAllowed;

� With above attributes, system can automatically create SQL for create, 
update, delete, and set audit fields appropriately. 

VGS_DB_Table – public attributes



41

class WO_Sewer extends VGS_DB_Table {

public function __construct($conn) {

parent::__construct($conn);

$this->tableName = 'WO_SEWER';

$this->tablePrefix = 'WSW_';

$this->keyFields = array('WSW_WO_NUM', 'WSW_SEQNO');

$this->hasAuditFields = true;

$this->isRecordDeletionAllowed = true;

}

public function create( $rec ) {

$this->checkPermissionByCategory('WO', 'CREATE');

$rec['WSW_SEQNO'] = $this->getNextSewerNum($rec['WSW_WO_NUM']);

$this->autoCreateRecord($rec);

}

public function update( $rec ) {

$this->checkPermissionByCategory('WO', 'UPDATE');

$this->autoUpdateRecord($rec);

}

Example of VGS_DB_Table based class



42

Example – Update Sewer Details



43

• Inputs array passed to VGS_Form->autoUpdateRecord( $inputs )

• Blue elements are ignored: prefix not = 'WSW_'

WSW_WO_NUM = 64901

WSW_SEQNO = 1

popup = 

mode = update

a = update

return_point = /wotest/controller/wswListCtrl.php

WO_TYPE = SI

WO_STATUS = CMP

WO_DATE_COMPLETED = Oct 08, 2012

WSW_ADDRESS = 19 Whisper Ln

WSW_CITY = MLV

WSW_LOCATED_PRIOR = N

WSW_SEWER_SIZE =  

WSW_SEWER_MATERIAL =  

WSW_SEWER_TYPE = SEPTIC

WSW_SEPARATION_FROM_GAS = REAR

WSW_INSPECTION_NEEDED = N

WSW_INSPECT_REASON = in rear

WSW_MOC_TRENCH = Y

WSW_MOC_HDD = Y

WSW_MOC_HOG = N

WSW_MOC_PLOWED = N

WSW_MOC_OTHER =  

WSW_NOTES =  

Sewer Update – example input values 



44

• Builds SQL update string, and array of values to bind, then…

• $this->execUpdate($sql, $values);

$sql:

update WO_SEWER set WSW_ADDRESS = ?,WSW_CITY = ?,WSW_LOCATED_PRIOR = ?, WSW_SEWER_SIZE = ?,

WSW_SEWER_MATERIAL = ?,WSW_SEWER_TYPE = ?, WSW_SEPARATION_FROM_GAS = ?,WSW_INSPECTION_NEEDED = ?,

WSW_INSPECT_REASON = ?, WSW_MOC_TRENCH = ?,WSW_MOC_HDD = ?,WSW_MOC_HOG = ?,WSW_MOC_PLOWED = ?, 

WSW_MOC_OTHER = ?,WSW_NOTES = ? , WSW_CHANGE_USER = ?, WSW_CHANGE_TIME = current timestamp

where WSW_WO_NUM = ? AND WSW_SEQNO = ?

$values:

Results of VGS_DB_Table->
autoUpdateRecord(array $inputs)

WSW_ADDRESS = 19 Whisper Ln

WSW_CITY = MLV

WSW_LOCATED_PRIOR = N

WSW_SEWER_SIZE =  

WSW_SEWER_MATERIAL =  

WSW_SEWER_TYPE = SEPTIC

WSW_SEPARATION_FROM_GAS = REAR

WSW_INSPECTION_NEEDED = N

WSW_INSPECT_REASON = in rear

WSW_MOC_TRENCH = Y

WSW_MOC_HDD = Y

WSW_MOC_HOG = N

WSW_MOC_PLOWED = N

WSW_MOC_OTHER =  

WSW_NOTES =  

WSW_CHANGE_USER = JVALANCE  

WSW_WO_NUM = 64901

WSW_SEQNO = 1

• Red = audit fields – automatically inserted
• Green = key fields, put at end of $values array



45

•Java OpenDocument Reports

•http://jodreports.sourceforge.net/ 

•Open source, Java-based report template tool

•Create documents and reports in OpenDocument Text 
format from templates

•Templates can be visually composed using the 
OpenOffice.org Writer word processor

•These documents can then be converted to PDF, Word and 
RTF with JODConverter

JOD Reports 



46

<WO>

<WO_NUM>65093</WO_NUM>

<WO_ENTRY_DATE>Sat Oct 20, 2012</WO_ENTRY_DATE>

<NEED_BY_DATE>Thu Oct 25, 2012</NEED_BY_DATE>

<WO_DESCRIPTION>47 Barrett St</WO_DESCRIPTION>

<WO_PREMISE_NUM>27590</WO_PREMISE_NUM>

<OWNERS_NAME>Valance, John G</OWNERS_NAME>

<OWNERS_PHONE>802-355-4024</OWNERS_PHONE>

<METER_NO>25018</METER_NO>

<WO_SPECIAL_INSTRUCTION />

<WO_TYPE_DESC>Service New Construction</WO_TYPE_DESC>

<WO_GL_COST>VGSBS-1071-0-65093</WO_GL_COST>

<PT_DESCRIPTION>Plastic Service 1&quot;</PT_DESCRIPTION>

<ESTLEN>.00</ESTLEN>

<ESTHRS>.00</ESTHRS>

<CURBSTOP>N</CURBSTOP>

<FLWLIM>800</FLWLIM>

<WO_TOWN_NAME>So. Burlington</WO_TOWN_NAME>

<MAIN_PIPE_TYPE />

</WO>

JODReports XML request



47



48

public function retrievePDF($xml, $request) {

// urlencode and concatenate the POST arguments 

$postargs = 'outputFormat=pdf&model=' . urlencode($xml);

// $request is JOD-complient URL for appropriate report template

$session = curl_init ( $request ); 

curl_setopt($session, CURLOPT_POST, true); // use HTTP POST

curl_setopt($session, CURLOPT_POSTFIELDS, $postargs); // this is body of POST

curl_setopt($session, CURLOPT_HEADER, false); // return headers with response

curl_setopt($session, CURLOPT_RETURNTRANSFER, true); // return response

curl_setopt($session, CURLOPT_BINARYTRANSFER, true); // binary response

$response = curl_exec ( $session ); 

curl_close ( $session );

return $response;

}

Use CURL to request JOD Report



Contact Information:
John Valance

johnv@jvalance.com
802-355-4024


